Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 103

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of a practical tritiated water monitor to supervise the discharge of treated water from Fukushima Daiichi Nuclear Power Plant

Sanada, Yukihisa; Oshikiri, Keisuke*; Kanno, Marina*; Abe, Tomohisa

Nuclear Instruments and Methods in Physics Research A, 1062, p.169208_1 - 169208_7, 2024/05

As part of the decommissioning work at the Fukushima Daiichi Nuclear Power Plant (FDNPP), the release of stored treated water began in 2023. In this study, we developed a practical tritium monitor to continuously monitor the concentration of tritiated water, as confirmed by batch sampling measurements at the FDNPP. The monitor is arranged with a flow cell detector comprising inexpensive plastic scintillator pellets and incorporating simultaneous measurements by three detectors, a veto detector, and lead shielding to reduce the influence of environmental $$gamma$$-rays. The system reached a detection limit of 911 Bq L-1 with a measurement time of 30 min, which is lower than the discharge standard for tritiated water of 1,500 Bq L-1. The system can also qualitatively distinguish the presence of disturbances due to interfering radionuclides other than tritium or background radiation using the $$beta$$-ray spectrum.

JAEA Reports

Document collection of the 39th Technical Special Committee on Fugen Decommissioning

Sato, Yuji; Miyamoto, Yuta; Awatani, Yuto; Yamamoto, Kosuke; Hatakeyama, Takumi

JAEA-Review 2023-002, 59 Pages, 2023/08

JAEA-Review-2023-002.pdf:8.75MB

"Fugen Decommissioning Engineering Center", in planning and carrying out our decommissioning technical development, organizes "Technical special committee on Fugen decommissioning" which consists of the members well-informed, aiming to make good use of Fugen as a place for technological development which is opened domestic and international, as the central place in research and development base of Fukui prefecture, and to utilize the outcome in our decommissioning to the technical development effectively. This report consists of presentation paper are "Achievements and Considerations for Sampling and Analysis of Reactor Core Components", "Treatment of liquid scintillator waste liquid" and "Results and issues of rationalization of decontamination related to the clearance and considerations related to surface contamination monitoring" which is presented in the 39th Technical Special Committee on Fugen Decommissioning.

Journal Articles

Rod-shaped pulse shape discrimination plastic scintillation detectors applied for neutron source direction survey

Koizumi, Mitsuo; Mochimaru, Takanori*; Hironaka, Kota; Takahashi, Tone; Yamanishi, Hirokuni*; Wakabayashi, Genichiro*

Nuclear Instruments and Methods in Physics Research A, 1042, p.167424_1 - 167424_6, 2022/11

 Times Cited Count:2 Percentile:53.91(Instruments & Instrumentation)

no abstracts in English

Journal Articles

Evaluation of detector performances of new thin position-sensitive scintillation detectors for SENJU diffractometer

Nakamura, Tatsuya; To, Kentaro; Koizumi, Tomokatsu; Kiyanagi, Ryoji; Ohara, Takashi; Ebine, Masumi; Sakasai, Kaoru

Proceedings of 2022 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022 IEEE NSS MIC RTSD) (Internet), 2 Pages, 2022/11

A new thin position-sensitive scintillation neutron detectors have been developed to replace present scintillation detectors in SENJU diffractometer at J-PARC MLF. The SENJU diffractometer originally composed of 37 position-sensitive detectors, where each detector has neutron sensitive area of 256 $$times$$ 256 mm with a pixel size of 4 $$times$$ 4 mm. To renew some original detectors the new detectors have been developed based on ZnS scintillator and wavelength-shifting fibers technology. The developed replacement detectors were designed with a thin thickness of 12 cm, which is 40% of the original detector. The new detectors have also improved detector performances to the original ones in terms of detection efficiency ($$sim$$60% for 2-A neutrons) and count uniformity (5-8%). The produced six detector modules have been implemented to the beamline after checking their detector performances in the lab.

Journal Articles

Neutron detector development for nuclear security

Koizumi, Mitsuo; Takahashi, Tone; Hironaka, Kota; Mochimaru, Takanori*; Yamanishi, Hirokuni*; Wakabayashi, Genichiro*

Annual Report of Cooperative Researches at Kindai University Reactor, 2020, p.76 - 80, 2021/12

no abstracts in English

Journal Articles

The First application of a Gd$$_{3}$$Al$$_{2}$$Ga$$_{3}$$O$$_{12}$$:Ce single-crystal scintillator to neutron radiography

Isegawa, Kazuhisa; Setoyama, Daigo*; Kimura, Hidehiko*; Shinohara, Takenao

Journal of Imaging (Internet), 7(11), p.232_1 - 232_9, 2021/11

Neutron radiography is regarded as complementary to X-ray radiography in terms of transmittance through materials, but its spatial resolution is still insufficient. In order to achieve higher resolution in neutron imaging, several approaches have been adopted such as optical magnification and event centroiding, and the authors focused on modification of the scintillator in this paper. A Gd$$_{3}$$Al$$_{2}$$Ga$$_{3}$$O$$_{12}$$:Ce single-crystal scintillator was applied to neutron radiography for the first time and was achieved a spatial resolution of 10.5 micrometers. The results indicate that this material can be a powerful candidate for a new neutron scintillator providing a resolution in micrometer order by optimizing the optical system and increasing the scintillator luminosity.

Journal Articles

Two-dimensional scintillation neutron detectors for the extension of SENJU diffractometer

Nakamura, Tatsuya; To, Kentaro; Koizumi, Tomokatsu; Kiyanagi, Ryoji; Ohara, Takashi; Ebine, Masumi; Sakasai, Kaoru

Proceedings of 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2020), Vol.1, p.483 - 484, 2021/09

Two-dimensional neutron detectors were developed for the extension of SENJU time-of-flight Laue single crystal neutron diffractometer in J-PARC MLF. The detectors are to be installed at the additional detector bank for the SENJU instrument. The detector module is made based on ZnS scintillator and wavelength-shifting fiber technology, where each detector module maintains a neutron-sensitive area of 256$$times$$256 mm with a pixel size of 4$$times$$4 mm. To meet the tight space limitation in the instrument, the detector was designed as compact as possible. The detector has a depth of 170 mm, which is about 40% smaller than that of the original SENJU detector. All four produced detectors exhibited similar detector performances: detection efficiency 50-60% for 2-${AA}$ neutron, $$^{60}$$Co gamma-ray sensitivity 1$$times$$10$$^{-5}$$, count uniformity 3-6%.

Journal Articles

Visualizing cation vacancies in Ce:Gd$$_{3}$$Al$$_{2}$$Ga$$_{3}$$O$$_{12}$$ scintillators by gamma-ray-induced positron annihilation lifetime spectroscopy

Fujimori, Kosuke*; Kitaura, Mamoru*; Taira, Yoshitaka*; Fujimoto, Masaki*; Zen, H.*; Watanabe, Shinta*; Kamada, Kei*; Okano, Yasuaki*; Kato, Masahiro*; Hosaka, Masahito*; et al.

Applied Physics Express, 13(8), p.085505_1 - 085505_4, 2020/08

 Times Cited Count:5 Percentile:33.01(Physics, Applied)

To clarify the existence of cation vacancies in Ce-doped Gd$$_{3}$$Al$$_{2}$$Ga$$_{3}$$O$$_{12}$$ (Ce:GAGG) scintillators, we performed gamma-ray-induced positron annihilation lifetime spectroscopy (GiPALS). GiPAL spectra of GAGG and Ce:GAGG comprised two exponential decay components, which were assigned to positron annihilation at bulk and defect states. By an analogy with Ce:Y$$_{3}$$Al$$_{5}$$O$$_{12}$$, the defect-related component was attributed to Al/Ga-O divacancy complexes. This component was weaker for Ce, Mg:GAGG, which correlated with the suppression of shallow electron traps responsible for phosphorescence. Oxygen vacancies were charge compensators for Al/Ga vacancies. The lifetime of the defect-related component was significantly changed by Mg co-doping. This was understood by considering aggregates of Mg$$^{2+}$$ ions at Al/Ga sites with oxygen vacancies, which resulted in the formation of vacancy clusters.

Journal Articles

A Submillimeter spatial resolution scintillation detector for time-of-flight neutron diffraction imaging

Nakamura, Tatsuya; Kawasaki, Takuro; To, Kentaro; Tsutsui, Noriaki; Ebine, Masumi; Birumachi, Atsushi; Sakasai, Kaoru

Proceedings of 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2018) (Internet), 3 Pages, 2019/10

A two-dimensional scintillation neutron detector with a submillimeter spatial resolution was developed for pulsed neutron diffraction imaging at the J-PARC MLF. The detector comprised the thin, single ZnS/$$^{6}$$LiF scintillator screen coupled with the crossed wavelength-shifting fiber array for light collection. For a high spatial resolution, the wavelength shifting fibers with diameter of 0.1 mm were used them for assembling the detector. The prototype detector that has a neutron-sensitive area of 24 $$times$$ 24 mm$$^{2}$$ exhibited a spatial resolution of 0.20$$pm$$0.06 mm and 0.16$$pm$$0.06 mm for x and y directions, respectively. The detector had a detection efficiency of 7$$%$$ for thermal neutrons with a $$^{60}$$Co $$gamma$$-ray sensitivity in the order of 10$$^{-6}$$. In this paper detailed detector design is presented together with experimental results using the pulsed neutron beam.

Journal Articles

Performance of large volume LaBr$$_{3}$$ scintillation detector equipped with specially-designed shield for neutron resonance capture analysis

Tsuchiya, Harufumi; Koizumi, Mitsuo; Kitatani, Fumito; Harada, Hideo

Nuclear Instruments and Methods in Physics Research A, 932, p.16 - 26, 2019/07

 Times Cited Count:0 Percentile:0.02(Instruments & Instrumentation)

Journal Articles

Diagnosis of neutron sensitivity within a scintillator/wavelength-shifting fiber coil element by using a collimated pulsed neutron beam

Nakamura, Tatsuya; To, Kentaro; Tsutsui, Noriaki; Ebine, Masumi; Birumachi, Atsushi; Sakasai, Kaoru

Proceedings of 2016 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2016), Vol.2, p.1506 - 1508, 2018/01

Position-dependent neutron sensitivity within an element of the scintillator / wavelength-shifting fiber coil (SFC) was evaluated by using a collimated pulsed neutron beam at the J-PARC/MLF. The collimated beam that has a size of 1 $$times$$ 1 mm$$^{2}$$ was scanned over the SFC element. The neutron counts were recorded and plotted in each incident position. The scanning results showed less neutron sensitivity at the juncture of the rolled scintillator, suggesting less light collection efficiency or a lack of scintillator materials due to imperfect manufacturing process.

Journal Articles

Development of scintillation neutron detector using wavelength-shifting fiber technology

Nakamura, Tatsuya; To, Kentaro; Sakasai, Kaoru

Hamon, 27(1), p.4 - 7, 2017/01

Development of scintillation neutron detectors using wavelength-shifting fiber (WLSF) technology at J-PARC MLF is briefly reviewed. The neutron-detecting head of this type detector comprises neutron-sensitive scintillator screens and WLSFs for light read out. The light collection using WLSFs enables us to design a detector with great flexibility. Detector specifications such as pixel size, spatial resolution, and neutron-sensitive area can be optimized to requirements in specific applications. We have intensively developed these detectors since 2005. A large number of detector modules have been produced and delivered to the neutron scattering instruments in the MLF. In this paper the design of SENJU detector is presented in detail together with recent development effort for detector technology alternative to helium-3 gas detectors.

Journal Articles

Field test around Fukushima Daiichi Nuclear Power Plant site using improved Ce:Gd$$_{3}$$(Al,Ga)$$_{5}$$O$$_{12}$$ scintillator Compton camera mounted on an unmanned helicopter

Shikaze, Yoshiaki; Nishizawa, Yukiyasu; Sanada, Yukihisa; Torii, Tatsuo; Jiang, J.*; Shimazoe, Kenji*; Takahashi, Hiroyuki*; Yoshino, Masao*; Ito, Shigeki*; Endo, Takanori*; et al.

Journal of Nuclear Science and Technology, 53(12), p.1907 - 1918, 2016/12

 Times Cited Count:37 Percentile:96.48(Nuclear Science & Technology)

The Compton camera was improved for use with the unmanned helicopter. Increase of the scintillator array from 4$$times$$4 to 8$$times$$8 and expanse of the distance between the two layers contributed to the improvements of detection efficiency and angular resolution, respectively. Measurements were performed over the riverbed of the Ukedo river of Namie town in Fukushima Prefecture. By programming of flight path and speed, the areas of 65 m $$times$$ 60 m and 65 m $$times$$ 180 m were measured during about 20 and 30 minutes, respectively. By the analysis the air dose rate maps at 1 m height were obtained precisely with the angular resolution corresponding to the position resolution of about 10 m from 10 m height. Hovering flights were executed over the hot spot areas for 10-20 minutes at 5-20 m height. By using the reconstruction software the $$gamma$$-ray images including the hot spots were obtained with the angular resolution same as that evaluated in the laboratory (about 10$$^{circ}$$).

Journal Articles

Development of alternative $$^3$$He NDA detector system

Koizumi, Mitsuo; Sakasai, Kaoru; Kureta, Masatoshi; Nakamura, Hironobu

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 58(11), p.642 - 646, 2016/11

no abstracts in English

Journal Articles

Ionoluminescence analysis of glass scintillators and application to single-ion-hit real-time detection

Yokoyama, Akihito; Kada, Wataru*; Sato, Takahiro; Koka, Masashi; Shimada, Keisuke*; Yokota, Yuya*; Miura, Kenta*; Hanaizumi, Osamu*

Nuclear Instruments and Methods in Physics Research B, 371, p.340 - 343, 2016/03

 Times Cited Count:6 Percentile:49.29(Instruments & Instrumentation)

no abstracts in English

Journal Articles

Numerical evaluation of the light transport properties of alternative He-3 neutron detectors using ceramic scintillators

Ozu, Akira; Takase, Misao*; Haruyama, Mitsuo; Kurata, Noritaka*; Kobayashi, Nozomi*; Kureta, Masatoshi; Nakamura, Tatsuya; To, Kentaro; Sakasai, Kaoru; Suzuki, Hiroyuki; et al.

Nuclear Instruments and Methods in Physics Research A, 798, p.62 - 69, 2015/10

 Times Cited Count:2 Percentile:17.57(Instruments & Instrumentation)

The light transport properties of scintillator light inside alternative He-3 neutron detector modules using scintillator sheets have been investigated by a ray-tracing simulation code. The detector module consists of a light-reflecting tube, a thin rectangular ceramic scintillator sheet laminated on a glass plate, and two photo-multiplier tubes (PMTs) mounted at both ends of the detector tube. The light induced on the surface of the scintillator sheet via nuclear interaction between the scintillator and neutrons are detected by the two PMTs. The light output of various detector modules in which the scintillator sheets are installed with several different arrangements were examined and evaluated in comparison with experimental results. The results derived from the simulation reveal that the light transport property is strongly dependent on the arrangement of the scintillator sheet inside the tube and the shape of the tube.

Journal Articles

Demonstration result of sample assay system equipped alternative He-3 detectors

Nakamura, Hironobu; Mukai, Yasunobu; Tobita, Hiroshi; Nakamichi, Hideo; Ozu, Akira; Kureta, Masatoshi; Kurita, Tsutomu; Seya, Michio

Proceedings of 37th ESARDA Annual Meeting (Internet), p.45 - 53, 2015/08

JAEA conducted an R&D project to develop a new type of neutron detector using ZnS/$$^{10}$$B$$_{2}$$O$$_{3}$$ ceramic scintillator (as an alternative neutron detector to He-3) with support of Japanese government. The design of the JAEAs alternative system (ASAS: Alternative Sample Assay System using ceramic scintillator tubes) refers basically to the INVS (INVentory Sample assay system) which is the passive type of neutron assay system equipped total 18 He-3 tubes and capable of measuring the small amount of Pu in the MOX powder or Pu nitrate solution in a vial for nuclear material accountancy and safeguards verification. In order to prove the alternative technology and the performance instead of He-3 detector, and to establish Pu measurement capability, JAEA developed and fabricated ASAS equipped 24 alternative ceramic scintillator tubes (which is equivalent to the same counting efficiency of INVS) and demonstrated. The demonstration activity implemented the confirmation of reproducibility about sample positioning, optimization of detector parameters, counting statistical uncertainty, stability check and figure of merit (FOM) using Cf check source and actual MOX powder in PCDF (Plutonium Conversion Development Facility). In addition, performance comparison between the current INVS and the ASAS was also implemented. In this paper, we present demonstration results with design information with Monte-Carlo simulation code (MCNP).

Journal Articles

Basic technology development of advanced non-destructive detection / Measurement of nuclear material for nuclear security and nuclear nonproliferation

Seya, Michio; Naoi, Yosuke; Kobayashi, Naoki; Nakamura, Takahisa; Hajima, Ryoichi; Soyama, Kazuhiko; Kureta, Masatoshi; Nakamura, Hironobu; Harada, Hideo

Kaku Busshitsu Kanri Gakkai (INMM) Nihon Shibu Dai-35-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2015/01

The Integrated Support Center for Nuclear Non-proliferation and Nuclear Security (ISCN) of Japan Atomic Energy Agency (JAEA) has been conducting (based on collaborations with JAEA other centers) the following basic technology development programs of advanced non-destructive detection/measurement of nuclear material for nuclear security and nuclear non-proliferation. (1) The demonstration test of the Pu-NDA system for spent fuel assembly using PNAR and SINRD (JAEA/USDOE(LANL) collaboration, completed in JFY2013), (2) Basic development of NDA technologies using laser Compton scattered $$gamma$$-rays (Demonstration of an intense mono-energetic $$gamma$$-ray source), (3) Development of alternative to He-3 neutron detection technology, (4) Development of neutron resonance densitometry (JAEA/JRC collaboration)This paper introduces above programs.

Journal Articles

Neutron-sensitive ZnS/$$^{10}$$B$$_{2}$$O$$_{3}$$ ceramic scintillator detector as an alternative to a $$^{3}$$He-gas-based detector for a plutonium canister assay system

Nakamura, Tatsuya; Ozu, Akira; To, Kentaro; Sakasai, Kaoru; Suzuki, Hiroyuki; Honda, Katsunori; Birumachi, Atsushi; Ebine, Masumi; Yamagishi, Hideshi*; Takase, Misao; et al.

Nuclear Instruments and Methods in Physics Research A, 763, p.340 - 346, 2014/05

 Times Cited Count:3 Percentile:27.01(Instruments & Instrumentation)

A neutron-sensitive ZnS/$$^{10}$$B$$_{2}$$O$$_{3}$$ ceramic scintillator detector was developed as an alternative to a $$^{3}$$He-gas-based detector for use in a plutonium canister assay system. The detector has a modular structure, with a flat ZnS/$$^{10}$$B$$_{2}$$O$$_{3}$$ceramic scintillator strip that is installed diagonally inside a light-reflecting aluminium case with a square cross section. The prototype detectors, which have a neutron-sensitive area of 30 mm $$times$$ 250 mm, exhibited a sensitivity of 21.7-23.4 $$pm$$ 0.1 cps$$/$$nv for thermal neutrons, a $$^{137}$$Cs $$gamma$$-ray sensitivity of 1.1-1.9 $$pm $$0.2 $$times$$ 10$$^{-7}$$ and a count variation of less than 6% over the detector length. A trial experiment revealed a temperature coefficient of less than -0.24$$pm$$ 0.05% / $$^{circ}$$C over the temperature range of 20-50$$^{circ}$$C.

Journal Articles

Evaluation of light transport property in alternative He-3 neutron detectors using ceramic scintillators by a ray-tracing simulation

Ozu, Akira; Takase, Misao*; Kurata, Noritaka*; Kobayashi, Nozomi*; Tobita, Hiroshi; Haruyama, Mitsuo; Kureta, Masatoshi; Nakamura, Tatsuya; Suzuki, Hiroyuki; To, Kentaro; et al.

Proceedings of 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference; 21st International Symposium on Room-Temperature Semiconductor X-ray and $$gamma$$-ray detectors (NSS/MIC 2014), 5 Pages, 2014/00

In Japan Atomic Energy Agency, the helium-3 alternative neutron detector using ceramic scintillators for nuclear safeguards is under development with the support of the government. The alternative detector module consists of four components: an aluminum regular square tube, a light reflecting foil put on the inner surface of the square tube, a rectangular scintillator sheet sintered on a glass plate, and two PMTs provided at both ends of the tube. The scintillator sheet is fit on the diagonal inside the square tube. The light transport property of scintillator lights inside the tube influences on the fundamental performance of the alternative detector. Therefore, the properties of the lights emitted on the surface of the scintillator sheet and scintillation lights passing through the glass plate to the PMTs in several arrangements of the scintillator in the tubes were investigated with a ray-tracing simulation. The results are described in comparison with the experimental results.

103 (Records 1-20 displayed on this page)